
Dl-Check: Dynamic Potential Deadlock
Detection Tool for Java Programs

Nikita Koval1(B), Dmitry Tsitelov2, and Roman Elizarov2

1 Computer Technology Department, ITMO University, St. Petersburg, Russia
koval@rain.ifmo.ru

2 dxLab, Devexperts, St. Petersburg, Russia
{cit,elizarov}@devexperts.com

Abstract. Deadlocks are one of the main problems in multithreaded
programming. This paper presents a novel approach to detecting poten-
tial deadlocks at run-time. As opposed to many dynamic methods based
on analyzing execution traces, it detects a potential deadlock immedi-
ately at the point of the lock hierarchy violation which happens first
during execution, so all the run-time context is available at the point
of detection. The approach is based on the target program instrumen-
tation to capture lock acquisition and release operations. An acyclic
lock-order graph is maintained incrementally, so cycles are detected dur-
ing graph maintenance. The presented algorithm is based on topological
order maintenance and uses various heuristics and concurrent data struc-
tures which improve performance and scalability. Experimental results
show that Dl-Check is efficient for large-scale multithreaded applications.

Keywords: Potential deadlock detection · Lock-order graph
Dynamic analysis · Java

1 Introduction

Since the beginning of the multicore era, developers have started writing multi-
threaded programs in order to use new hardware more efficiently [1]. One of the
most common problems in multithreaded programming is a deadlock. There are
two types of deadlocks [2–4]: resource deadlocks and communication deadlocks.
The resource deadlock occurs if each thread of the set tries to acquire the lock
held by another thread from this set. The communication deadlock happens if
each thread of the set is waiting for a signal from another thread from this set.
This paper focuses on resource deadlocks.

Several authors [5–8] use static analysis to detect potential deadlocks, which
analyzes source code without its execution and can guarantee that the program
is deadlock-free. However, this approach produces a lot of false positives. For
example, in the experiment of Williams et al. [6] more than 100’000 potential
deadlocks were reported while only 7 of them were real deadlocks. The second
approach is model checking, which is used to analyze all possible program execu-
tions. It is used in several works [9,10] and it can also guarantee that the program
c© Springer International Publishing AG 2018
V. Itsykson et al. (Eds.): TMPA 2017, CCIS 779, pp. 64–76, 2018.
https://doi.org/10.1007/978-3-319-71734-0_6

Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs 65

has no possible deadlocks. In comparison with static analysis, model checking
can guarantee the absence of false positives, but it is more complicated to imple-
ment and requires a lot of computational resource. Consequently, this approach
is less suitable for large programs. The third approach is dynamic analysis, when
two different techniques are applied. The first technique is based on collecting
execution traces and analyzing them after the program has been executed. This
technique is used in several tools such as JCarder [11], MulticoreSDK [4], and
ConLock [12]. The second technique detects a potential deadlock immediately
when it happens like in the VisualThreads [13] tool. The main advantage of this
technique is immediate access to all context information, such as stack traces,
at the point of detection.

In this paper, we present an algorithm based on dynamic analysis and imme-
diate detection of potential deadlocks at run-time. Alike many authors, we define
potential deadlock as a lock hierarchy violation and use the lock-order graph to
detect it [7,11,13–16]. However, we present a more scalable approach to maintain
lock-order graphs. The main idea of this approach is to keep the acyclic part of
the lock-order graph and to perform incremental topological order maintenance.

The paper is organized in the following way. Section 2 presents the algorithm
with pseudo code listings. Implementation details are discussed in Sect. 3. Then
Sect. 4 shows experimental results for the performance overhead. Finally, Sect. 5
gives the paper conclusion.

2 Algorithm

Definition 1. Lock u is acquired before lock v (u → v) if at some point lock
v is acquired under lock u in the same thread.

Definition 2. The lock hierarchy is a partial order on locks such that for
every lock u, which is acquired before lock v, u comes before v in the ordering:

∀u, v : u → v ⇒ ord(u) < ord(v)

Note that lock hierarchy exists only when all pairs of locks are acquired in the
same order in all executions.

The lock hierarchy is a primary method to avoid deadlocks in complex pro-
grams [17,18], so this paper determines potential deadlock as a lock hierarchy
violation.

Definition 3. Lock-order graph is a graph, where every vertex is associated
with a lock while edge (u, v) means that at some point lock u is acquired before
lock v.

Lemma 1. Lock hierarchy is a suborder of all possible topological orders on the
lock-order graph.

According to Lemma 1, the approach presented in this paper maintains topo-
logical order on the lock-order graph and reports a potential deadlock when
topological order cannot be satisfied. However, this method differs from search-
ing cycles in the lock-order graph.

66 N. Koval et al.

2.1 Minimization Principle

In Fig. 1 you can see an example of the code which produces two cycles in the
lock-order graph. This lock-order graph is presented in Fig. 2. However, cycle
〈v, w, u〉 has lock w which is not related to the error. The real error lies in the
fact that locks v and u are acquired in the wrong order, which corresponds
to cycle 〈v, u〉. Consequently, two or more cycles in the lock-order graph can
correspond to the same potential deadlock.

new Thread (() −> {
synchronized (v) {

synchronized (w) {
synchronized (u) { }

}
}

}) . s t a r t () ;
new Thread (() −> {

synchronized (u) {
synchronized (v) { }

}
}) . s t a r t () ;

Fig. 1. This example produces two potential deadlocks

v

w

u

Fig. 2. The lock-order graph produced by the code in Fig. 1. It has two cycles: 〈v, w, u〉
and 〈v, u〉. However, only 〈v, u〉 is really helpful

Definition 4. If insertion of an edge creates several cycles in the lock-order
graph, the first cycle is more useful than the second one on condition that the
fist cycle is shorter. The ones which are shortest (may be more than one) are
useful.

This paper proposes the following rule. If a new edge creates several cycles
in the lock-order graph, only one useful cycle is to be produced. This principle
is called minimization. For instance, edge (u, v) creates two cycles in the lock-
order graph in Fig. 2, however, the most important cycle is 〈v, u〉, as discussed
before, and only this cycle is to be produced according to the proposed rule.

Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs 67

2.2 Capturing Lock Acquire and Release Operations

Lock acquire and release operations shall be captured to create a lock-order
graph. In this paper acquisition and release of lock l by thread τ are denoted
as LAτ

l and LRτ
l respectively. During each of these operations, a multiset of

locks held by the current thread should be updated. This multiset for thread
τ is denoted as LOCKSETτ . Algorithm 1 captures lock acquire and release
operations through invocation of AfterLA and BeforeLR procedures. It is worth
mentioning that these procedures are invoked under the acquired lock l. For each
lock instance, the algorithm associates a node in the lock-order graph and there-
after manipulates this node only. Here is the base capturing algorithm without
graph maintenance logic, which is discussed further.

Algorithm 1. Lock acquire and release analysis
1: Nodes // Associates locks with nodes
2:
3: procedure AfterLA(l, τ)
4: v ← GetNode(l) // Get a node associated with the lock
5: // Add edges to the lock-order graph and look for new cycles
6: cycles ← AddEdges(v, LOCKSETτ)
7: // Add the node to the multiset associated with the current thread
8: LOCKSETτ .add(v)
9: print(cycles) // Print potential deadlocks

10: end procedure
11:
12: procedure BeforeLR(l, τ)
13: v ← GetNode(l) // Get a node associated with the lock
14: // Remove the node from the multiset associated with the current thread
15: LOCKSETτ .remove(v)
16: end procedure
17:
18: function GetNode(l)
19: return Nodes.computeIfAbsent(l, CreateNode(l))
20: end function

2.3 Topological Order Maintenance

This subsection describes the implementation of AddEdges function
(Algorithm 2). As described above, the presented algorithm uses incremen-
tal topological order maintenance to find lock hierarchy violations. To main-
tain topological order incrementally the algorithm suggested by Marchetti-
Spaccamela et al. [19,20] is used. Their solution does not reposition all nodes
in the graph, but only the ones in the currently affected region. For instance,
after adding edge (u, v), where ord(u) > ord(v), only the edges with the order
between ord(v) and ord(u) should be repositioned. However, this approach needs

68 N. Koval et al.

a data structure which associates a topological order with the node in the graph.
An algorithm to maintain such structure is presented in Subsect. 3.4.

In AfterLA procedure, multiple edges can be added if the number of already
acquired locks by the current thread is more than one. However, it is possible
to maintain topological order in a single iteration if these edges do not create
cycles. In practice, it tends to be true. According to Algorithm 2, it is assumed
that the lock, associated with the node v, is acquired. Firstly, if the order of
all nodes in LOCKSETτ is lower than the order of v, then all edges from these
nodes to v can be added according to the current topological order. To check this
fact the synchronization with topological order modification process is required.
For this purpose, the algorithm uses a read-write lock. It acquires a read lock
for read-only operations (e.g. atomically reading topological order values for
several nodes) and modifying operations with nodes associated with the currently
acquired lock only (e.g. adding an edge from the associated node to another one).
The write lock is acquired during topological order maintenance. If the current
topological order is violated, it should be fixed according to the new edge (u, v),
where u is the node with the smallest topological order from LOCKSETτ . If
this operation is successfully done, then v is correctly ordered with all nodes
from LOCKSETτ because nodes in LOCKSETτ are ordered already. Otherwise,
if the topological order cannot be maintained, then the algorithm tries to add
each new edge separately and detects cycles.

In case adding edge (u, v) leads to a topological order violation, the shortest
path from v to u is to be found. This shortest path is a cycle to be reported
further. To solve this issue the BFS (breadth-first search) algorithm [21] is used.

x

a

bc

d

e

f g

h

Fig. 3. Snowflake pattern of lock-order subgraph in many programs

The last part in topological order maintenance is the decision on the initial
value of the topological order for new nodes. Our experience shows that many
programs (like Apache Derby [22], IntelliJ Idea [23], dxFeed [24] and others)
have a common pattern in the lock-order graph like a subgraph in Fig. 3 with
one long-lived lock in the center and many hundreds of short-lived locks around
it. Thus, initializing new nodes with the next highest order immediately produces
correct topological order after adding the corresponding edges.

Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs 69

Algorithm 2. AddEdges function
1: E // Lock-order graph edges
2: CE// Lock-order graph cyclic edges
3: RWLock// Read-Write lock for manipulations with graph
4:
5: function AddEdges(v, LOCKSETτ)
6: newEdges ← { (u, v) | u �= v ∧ u ∈ LOCKSETτ ∧ (u, v) /∈ E ∪ CE}
7: if newEdges= ∅ then
8: return ∅

9: // Try to add all new edges without changing topological order
10: RWLock .readLock()
11: if ∀ (u, v) ∈ newEdges: ord(u) < ord(v) then
12: E ← E ∪ newEdges
13: RWLock .readUnlock()
14: return ∅

15: RWLock .readUnlock()
16: // Maintain topological order
17: RWLock .writeLock()
18: rightmost ← u : (u, v) ∈ newEdges ∧ ∀ (w, v) ∈ newEdges: ord(w) ≤ ord(u)
19: if MaintainTopologicalOrder(rightmost , v) then
20: E ← E ∪ newEdges
21: RWLock .writeUnlock()
22: return ∅

23: // Topological order cannot be maintained, find cycles
24: cycles← {}
25: while newEdges �= ∅ do
26: (u, v) ← newEdges.remove() // Get and remove node from newEdges
27: if MaintainTopologicalOrder(u, v) then
28: E ← E ∪ (u, v)
29: else
30: // Cycle detected
31: cycles ← cycles ∪ ShortestPath(v, u)
32: CE ← CE ∪ (u, v)
33: RWLock .writeUnlock()
34: return cycles
35: end function

2.4 Algorithm Complexity

This subsection bounds the complexity of the proposed algorithm. The BeforeLR
procedure only gets an associated node in O(1) on the average using hash-tables
and removes it from LOCKSETτ in O(B) at worst, where B is the number of
acquired locks in the current thread. The bound of AfterLA procedure consists
of two parts. Firstly, if acquisition of lock l does not produce new cycles (the
typical case), it works in O(B+|V |+|E|), where |V | is the number of nodes in the
lock-order graph and |E| is the number of edges in it. According to the statistics,
which was collected for analyzed programs, |E| ≈ 4 · |V |. It is worth noting, that
if a program uses the same lock instances, the associated with them nodes can

70 N. Koval et al.

be already ordered before and LAτ
l operation bounds to O(B). Otherwise, if

acquiring lock l creates a cycle, BFS could be invoked B times at worst, and the
total complexity is O(B(|V | + |E|)).

2.5 Limitations

There is likelihood that a new edge will create two independent cycles, as shown
in Fig. 4. In practice, such situations are improbable, and commonly the error
lies in acquiring lock u before lock v. Anyway, this approach guarantees that at
least one potential deadlock is reported in case lock hierarchy is violated.

u

v

w

x

y

Fig. 4. Edge (u, v) creates two independent cycles: 〈v, w, u〉 and 〈v, x, y, u〉, but only
the first cycle is produced according to the minimization principle

Another problem is that useful cycle may not be detected. This issue can
occur if an already found cycle has been minimized. For instance, Fig. 5 shows
that if edge (u, v) creates cycle 〈v, z, u〉, then adding edge (v, u) does not create
a shorter cycle 〈v, u〉. In real-world programs the length of cycles in the lock-
order graph is almost always lower than five [25], so the cycle minimization logic
is not included in the presented algorithm. However, there is a simple way to
minimize cycles without a significant performance impact. By the moment edge
(u, v) creates a cycle, path v � u already exists. Therefore, minimizing this cycle
applies to minimizing path v � u. This can be achieved with the help of BFS
algorithm.

2.6 Single Threaded and Guarded Cycles

Many authors treat single threaded and guarded cycles as safe [11,14–16]. Single
threaded cycle refers to a cycle which is created from locks acquired only in the
single thread. Guarded cycle refers to a cycle which is guarded by a gate lock
“taken higher” up by all involved threads. However, ignoring the lock hierarchy
violation can lead to a potential deadlock after code refactoring. Thus, this paper
considers all lock hierarchy violations.

Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs 71

v

w

u

(a) Initial state of lock-
order graph

v

w

u

(b) Adding an edge (u, v)
creates a cycle

v

w

u

(c) Cycle minimization is
not detected

Fig. 5. Example of cycle minimization problem

3 Implementation

3.1 Instrumentation

The presented algorithm is implemented in Dl-Check tool [26] as a Java agent.
For capturing lock acquire and release operations it modifies Java byte code via
ASM framework [27,28] at certain points during class loading:

– monitorenter and monitorexit instructions. AfterLA procedure is inserted
after monitorenter instruction and BeforeLR procedure is inserted before
monitorexit instruction, so analysis is invoked under the acquired lock;

– synchronized methods. AfterLA and BeforeLR procedures are inserted as
the first and the last action of the method, accordingly;

– java.util.concurrent.locks.Lock. AfterLA procedure is inserted after
lock and after successful tryLock methods invocations, BeforeLR procedure
is inserted before unlock method invocations.

3.2 Memory Management

Java has a garbage collector for memory management purposes. Thus, when a
lock, associated with specified node in the lock-order graph, is collected by the
garbage collector, this node should be removed from the lock-order graph to
avoid memory leaks. For this purposes WeakReference [29] is used for almost all
internal data structures.

3.3 Multiset of Held Locks

According to the statistics, which was collected for analyzed programs, locks are
acquired and released in “last in, first out” order in almost all cases. Thus, the
multiset is implemented as a stack with support of removing from the middle.
This way, almost all operations with this multiset work in O(1).

72 N. Koval et al.

Algorithm 3. Node life-cycle
1: Buffer// Buffer for new nodes
2: OrdInv// Associates topological order with nodes
3:
4: function CreateNode(l)
5: node← new Node(l)
6: Buffer .push(node)
7: if Buffer .size() > MAX BUFFER SIZE then
8: RWLock .writeLock.lock()
9: // Compress OrdInv if needed and flush new lock nodes buffer

10: CompressOrdInv()
11: FlushBuffer()
12: RWLock .writeLock.unlock()
13: return node
14: end function
15:
16: procedure FlushBuffer
17: while Buffer �= ∅ do
18: node← Buffer .pop()
19: allocate(node, OrdInv .size())
20: end procedure
21:
22: procedure CompressOrdInv
23: if OrdInv .deadNodes() > MAX DEAD NODES then
24: order ← 0
25: for node | node ∈ nodes ∧ isAlive(node) do
26: OrdInv .remove(node)
27: allocate(node, order)
28: order ← order+1
29: end procedure
30:
31: // Modification for AddEdges procedure
32: function AddEdges(v, LOCKSETτ)
33: ...
34: // If edge with tail from Buffer should be added then
35: // compress OrdInv if needed and flush new lock nodes buffer
36: if ∃(u, v) ∈ newEdges: u ∈ Buffer then
37: RWLock .writeLock()
38: CompressOrdInv()
39: FlushBuffer()
40: RWLock .writeUnlock()
41: ...
42: RWLock .writeLock() // Acquired for topological order maintenance
43: // Compress OrdInv if needed and flush new lock nodes buffer
44: CompressOrdInv()
45: FlushBuffer()
46: ...
47: end function

Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs 73

3.4 Node Life-Cycle

Creating a new node requires topological order initialization and storing in
OrdInv , so this operation should be executed under the write lock. However,
according to the snowflake pattern in Fig. 3, many nodes have only one incom-
ing and no outgoing edges, so topological order maintenance is not required for
them. Adding such nodes without acquiring the write lock allows to process them
without blocking and improves the scalability of the algorithm. To achieve this
goal a temporary lock-free buffer for new lock nodes is used. While the node is
stored in this temporary buffer, its order is equal to ∞ and it is not stored in
OrdInv . Thus, when a new edge (u, v) is added and u is in the temporary buffer
all nodes from it should be stored in OrdInv with initialized order. To avoid
memory leaks this buffer has a maximum capacity and OrdInv is cleaned up
periodically to remove nodes, which have been collected by the garbage collec-
tor. Algorithm 3 has a pseudo code for maintaining such temporary buffer and
OrdInv . Note that OrdInv also changes due to topological order maintenance.

4 Evaluation

Dl-Check is evaluated on a variety of Java multithreaded benchmarks and com-
pared with JCarder [11] and MulticoreSDK [4] tools. Apart from the fact that
these instruments use another technique, there is no available instrument which
detects potential deadlocks immediately at run-time. Table 1 lists the bench-
marks used in the experiment. All benchmarks except Fine-Grained are real-
world programs. The experiment runs on a machine with two Intel R© Xeon R©

E5-2630 v4 @ 2.20 GHz processors and 128 GiB RAM under Java HotSpot ver-
sion 1.8.0 92.

Table 1. Benchmark programs and their descriptions

Benchmark Description

derby 1, 2 Benchmark for Apache Derby [22] from SpecJVM2008
benchmark suite [30]. Runs with 4 and 40 threads
respectively

Fine-Grained 1, 2 Benchmark for fine-grained locking [17] from Dl-Check [26].
Runs with 10 threads for 100 and 10’000 locks respectively

luindex Benchmark for Apache Lucene [31] from DaCapo
benchmark suite [32]

avrora Benchmark from DaCapo benchmark suite [32] which
simulates a number of programs run on a grid of AVR
microcontrollers

h2 Benchmark from DaCapo benchmark suite [32] which
simulates a banking application

74 N. Koval et al.

Table 2. Memory usage

Benchmark Baseline Dl-Check JCarder MulticoreSDK

derby 1 ∼ 1.85 GiB ∼ 1.85 GiB ∼ 1.12 GiB ∼ 1.36 GiB

derby 2 ∼ 205MB ∼ 220 MB ∼ 250MB ∼ 230 MB

Fine-Grained 1 ∼ 69MB ∼ 111 MB —1 —1

Fine-Grained 2 ∼ 140MB ∼ 188MB —1 —1

luindex ∼ 17MB ∼18 MB ∼17 MB ∼23 MB

avrora ∼22 MB ∼23 MB ∼23 MB ∼20 MB

h2 ∼190 MB ∼190 MB ∼190 MB ∼190 MB
1JCarder and MulticoreSDK cannot be used with Fine-Grained benchmarks
because of bugs in the bytecode instrumentation

Table 3. Throughput, op/s

Benchmark Baseline result Dl-Check JCarder MulticoreSDK

result slowdown result slowdown result slowdown

derby 1 319.37 ± 2.6 208.94 ± 6.08 1.53 32.94 ± 0.73 9.7 43.75 ± 1 7.3

derby 2 2298.47 ± 10.72 1303.48 ± 76.29 1.76 17.93 ± 0.18 128.2 19.04 ± 0.61 120.71

Fine-Grained

1

23.62 ± 6.7 5.51 ± 0.93 4.29 —1 —1 —1 —1

Fine-Grained

2

39.72 ± 1.92 2.2 ± 0.46 18.05 —1 —1 —1 —1

luindex 1.21 ± 0.07 1.18 ± 0.08 1.03 0.97 ± 0.02 1.25 0.03 ± 0.001 40.33

avrora 0.24 ± 0.01 0.23 ± 0.01 1.04 0.19 ± 0.01 1.26 0.18 ± 0.03 1.33

h2 0.13 ± 0.004 0.05 ± 0.001 2.6 0.05 ± 0.002 2.6 0.04 ± 0.001 3.25

1JCarder and MulticoreSDK cannot be used with Fine-Grained benchmarks because of bugs in the bytecode

instrumentation

As Table 2 shows, all tools introduce additional memory overhead. However,
for Fine-Grained benchmarks Dl-Check needs to store only O(V +E) additional
information, where |E| ≈ |V |

2 instead of approximation as |E| ≈ 4 · |V |.
Table 3 shows the performance metrics for every analyzing tool. The number

of benchmark operations per second (the higher the better) is used as the base
metric and the average slowdown factor (the less the better) is presented addi-
tionally. As this table shows, the performance impact is more significant. JCarder
and MulticoreSDK trace lock acquire and release operations during run-time and
analyze the collected data off-line. Thus, the impact of tracing has been mea-
sured for them. The table shows that JCarder and MulticoreSDK make some
benchmarks more than 100 times slower. Despite checking for deadlocks during
run-time, Dl-Check slows down real programs threefold at most and shows high
scalability. The fine-grained locking is the most aggressive benchmark for the
presented algorithm, so for a big number of locks, the slowdown is significant.
It occurs because topological order maintenance is often invoked on the large
region.

Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs 75

5 Conclusion

This paper presents an efficient and scalable algorithm to detect potential dead-
locks immediately at run-time. As a result of this work, Dl-Check tool for Java
has been implemented. The experiments have shown that Dl-Check has a small
impact on performance and memory usage for real-world programs and shows
better results than other tools using dynamic analysis.

Introducing a lock grouping feature [4,14,25] and contracts to describe lock
acquisition rules for specified parts of the analyzed program is planned for the
future. The current version of Dl-Check is available on GitHub: http://github.
com/Devexperts/dlcheck.

References

1. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s J. 30(3), 202–210 (2005)

2. Knapp, E.: Deadlock detection in distributed databases. ACM Comput. Surv.
19(4), 303–328 (1987)

3. Singhal, M.: Deadlock detection in distributed systems (1989)
4. Da Luo, Z., Das, R., Qi, Y.: MulticoreSDK: a practical and efficient deadlock detec-

tor for real-world applications. In: Proceedings - 4th IEEE International Conference
on Software Testing, Verification, and Validation, ICST 2011, pp. 309–318 (2011)

5. Artho, C., Biere, A.: Applying static analysis to large-scale, multi-threaded Java
programs. In: Proceedings of the Australian Software Engineering Conference,
ASWEC, pp. 68–75, January 2001

6. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer,
Heidelberg (2005). https://doi.org/10.1007/11531142 26

7. Agarwal, R., Wang, L., Stoller, S.D.: Detecting potential deadlocks with static
analysis and run-time monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC
2005. LNCS, vol. 3875, pp. 191–207. Springer, Heidelberg (2006). https://doi.org/
10.1007/11678779 14

8. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock detection. In:
Proceedings of the 31st International Conference on Software Engineering

9. Mazzanti, F., Spagnolo, G.O., Della Longa, S., Ferrari, A.: Deadlock avoidance
in train scheduling: a model checking approach. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 109–123. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10702-8 8

10. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient deadlock-freedom
checking using local analysis and SAT solving. In: Ábrahám, E., Huisman, M.
(eds.) IFM 2016. LNCS, vol. 9681, pp. 345–360. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 22

11. JCarder – dynamic deadlock finder for Java (2010). http://www.jcarder.org
12. Cai, Y., Wu, S., Chan, W.K.: ConLock: a constraint-based approach to dynamic

checking on deadlocks in multithreaded programs. In: Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014, pp. 491–502 (2014)

13. Havelund, K.: Using runtime analysis to guide model checking of Java programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
245–264. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 15

http://github.com/Devexperts/dlcheck
http://github.com/Devexperts/dlcheck
https://doi.org/10.1007/11531142_26
https://doi.org/10.1007/11678779_14
https://doi.org/10.1007/11678779_14
https://doi.org/10.1007/978-3-319-10702-8_8
https://doi.org/10.1007/978-3-319-10702-8_8
https://doi.org/10.1007/978-3-319-33693-0_22
https://doi.org/10.1007/978-3-319-33693-0_22
http://www.jcarder.org
https://doi.org/10.1007/10722468_15

76 N. Koval et al.

14. Agarwal, R., Bensalem, S., Farchi, E., Havelund, K., Nir-Buchbinder, Y., Stoller,
S.D., Ur, S., Wang, L.: Detection of deadlock potentials in multithreaded programs.
IBM J. Res. Dev. 54(5), 3:1–3:15 (2010)

15. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp.
208–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11678779 15

16. Harrow, J.J.: Runtime checking of multithreaded applications with visual threads.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
331–342. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 20

17. Herlihy, M.: The art of multiprocessor programming (2006)
18. Meisel, J.: Multithreaded programming. EE Eval. Eng. 46(12), 12–17 (2007)
19. Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: Maintaining a topological order

under edge insertions. Inf. Process. Lett. 59(1), 53–58 (1996)
20. Pearce, D.J., Kelly, P.H.J.: A batch algorithm for maintaining a topological order.

In: Conferences in Research and Practice in Information Technology Series, vol.
102(1), pp. 79–87 (2010)

21. Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)
22. Apache Derby (2016). https://db.apache.org/derby
23. IntelliJ IDEA the Java IDE (2016). https://www.jetbrains.com/idea/
24. dxFeed Market Data (2016). http://www.dxfeed.com/
25. Chan, W.K.: Magiclock: scalable detection of potential deadlocks in large-scale

multithreaded programs. IEEE Trans. Softw. Eng. 40(3), 266–281 (2014)
26. Dl-Check – tool for finding potential deadlocks in Java programs (2016). https://

github.com/Devexperts/dlcheck
27. Bruneton, E.: ASM 4.0-A Java bytecode engineering library (2011). http://

download.forge.objectweb.org/asm/asm4-guide.pdf. Accessed 18 May 2013
28. Kuleshov, E.: Using the ASM framework to implement common Java bytecode

transformation patterns. Aspect-Oriented Software Development (2007)
29. Monson, L.: Caching & weakreferences. JAVA Dev. J. 3(8), 32–36 (1998)
30. Shiv, K., Chow, K., Wang, Y., Petrochenko, D.: SPECjvm2008 performance char-

acterization. In: Kaeli, D., Sachs, K. (eds.) SBW 2009. LNCS, vol. 5419, pp. 17–35.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93799-9 2

31. Apache Lucene (2010)
32. DaCapo benchmark suite (2009). http://dacapobench.org/

https://doi.org/10.1007/11678779_15
https://doi.org/10.1007/10722468_20
https://db.apache.org/derby
https://www.jetbrains.com/idea/
http://www.dxfeed.com/
https://github.com/Devexperts/dlcheck
https://github.com/Devexperts/dlcheck
http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://download.forge.objectweb.org/asm/asm4-guide.pdf
https://doi.org/10.1007/978-3-540-93799-9_2
http://dacapobench.org/

	Dl-Check: Dynamic Potential Deadlock Detection Tool for Java Programs
	1 Introduction
	2 Algorithm
	2.1 Minimization Principle
	2.2 Capturing Lock Acquire and Release Operations
	2.3 Topological Order Maintenance
	2.4 Algorithm Complexity
	2.5 Limitations
	2.6 Single Threaded and Guarded Cycles

	3 Implementation
	3.1 Instrumentation
	3.2 Memory Management
	3.3 Multiset of Held Locks
	3.4 Node Life-Cycle

	4 Evaluation
	5 Conclusion
	References

